.

[PPSO -SRI

e

L M
el L e e

8672995 13:34 (RAA » 52744 NO.B56 POO2
-,
- Foren Approver
REPORT DOCUMENTATION PAGE OMB No 0708 0188

e LT T ot e T S L e T
e L W f‘f T3 aw: At T e e om’bm'r:v» o, AN

1. AGENCY USE ONLY (1cavs Dlenk)] 2. REPORY o“t 3. REPORT YYPc AND DATES COVERED

01 Jul 95 Annual Technical,Ol Jul 94-30 Jun95§{
R

4. TITLE AND SUBTITLE

Scalable I/0 for Irregular Loosely Synchronous
Problems

S FUNDING BUMBERS
G N00O14-94-1-0661

e AUTHORES)

Anurag Acharya, compiler

7. PGRFORMGNE ORGANIZATION MM&{S; AND miﬂ“)
University of Maryland

Department of Computer Science
College Park, Maryland 20742-3255

$. PERIORMING ORGANIZATION
REPORT NUMBLR

SPONSORING | MONITORING AGENCY NAME(S) AND ADORESSIES)

Office of Naval Research, ONR 252 DG
Ballston Tower One

800 North Quincy Street

Arlington, VA 22217-5660

SRt ——
10. SPONSORING : MONITORING
AGENCY REPORT NUMEBER

11. SUPPLEMENTARY NERS

w
T3 DISTRIBUTION | AVAILABLLITY STATEMENT

126 DISTRISUTION ¢o0t

TOETAUTION §¢

Fhsarayyy I

Approved for g

Onlimi e d

ublic relecsel
Linlimited

-msnmnae—ﬂrf

——

13. ABSTRALT (Maximum 200 wirrds)

level.

Jovian parallel I/0 library which provides support
operatiqns.

To achieve good I/0 performance on irregular, loosely synchronous problems
it is necessary to work both at the application and the system support
The first section describes our effor at developing an efficient
out-of-core parallel sparse cholesky solver as an example of an irregular,
loosely synchronous application and the second section describes the

for collective I/0

14, SURJECT TERMS

I/0 performance, parallel sparse cholesky solver,
parallel library

15. NUMBER OF PAGES

A

.o

OF ABSTRACT

37 SECURITY ClASSIFICATION 1 T} SECUNTY CLASSIFICATION
OF REPORT Tris PAGE

19 SECURITY CLASSIFICATION

20. LIVITATION OF ABSTRACT

NS\ 7560-0° -28:2-$%0

Y

Report on “Scalable I/O for Irregular Loosely Synchronous Problems’
Principal Investigator: Joel Saltz

Department of Computer Science
University of Maryland, College Park MD 20742

July 1995

To achieve good 1/O performance on irregular, loosely synchronous problems, it is neces-
sary to work both at the application and the system support level. The first section describes
our effort at developing an efficient out-of-core parallel sparse cholesky solver as an example
of an irregular, loosely synchronous application and the second section describes the Jovian
parallel I/O library which provides support for collective I/O operations.

1 Owut-of-core Parallel Sparse Cholesky Solver

Many scientific and engineering applications require the solution of very large sparse linear
systems of the form Az = b where A is sparse, symmetric and positive-definite. In some

cases the memory requirements exceed the capacity of even the largest parallel supercom- -

puters. Currently the largest installed memory pool has 51.2 GBs of main memory out of
which a little more than 40GBs is available for user programs. The largest sparse system
(with 10% sparsity and double precision arithmetic) that can be solved with 40GBs of mem-
ory contains roughly 223K equations. The demands of some applications are far beyond
that limit, structural acoustics problems being an example. Submarine structural acoustics
problems can require solution of sparse linear systems with 2-3 million equations. These
applications require efficient out-of-core methods which hide the disk latency by overlapping
I/O with computation and which take advantage of the parallelism provided by the disk
arrays available on modern parallel architectures.

We have developed an out-of-core parallel sparse Cholesky solver to address the direct
solution of very large sparse systems in parallel machines with large main memory and disk
capacity. The solver is targeted for distributed memory parallel architectures with local
disk(s) on each compute node. In principle, this is not a requirement for the out-of-core
algorithm, rather it is a requirement of the current implementation. The main features of

our out-of-core sparse solver are:

e Use of asynchronous I/0 to overlap computation and I/O

19960415 034

o Blocked factorization kernels for high CPU utilization DTI@ QUALITY INSFECTED 5

o Parallel execution of numerical computations and I/O

The input to the solver is an ordered and permuted matrix, which has not been sym-

bolically factored. Because of the large disk space requirements of the sparse matrices after
the fill-ins, we have developed a parallel symbolic factorization routine which distributes the

matrix components to the local disks of processors. The role of the symbolic factorization
routine is to compute the row indices of the lower triangular Cholesky factor, accounting
fill-in entries caused by the Cholesky factorization. The row indices of Cholesky factor, as
well as the row indices and the numerical values of the input matrix is stored in binary after
the completion of the symbolic factorization routine.

The next component of our parallel out-of-core sparse solver is the block partitioner. This
component is responsible for producing the supernodal blocks that lists the nonzeros in row-
major order within a supernode. The sparse matrix is partitioned in two dimensions along
the boundaries of the supernodes. The blocks are distributed among the computational
nodes using the scatter decomposition. Each processor stores the blocks in its local disk
along with the information that describes the block stored. '

We have taken a supernodal approach in our solver. The only static data in the solver
is the size and offset of each supernodes’ blocks, which is proportional to the number of
supernodes in size. The computation proceeds from left-to-right in a right-looking variant of
sparse Cholesky. At each factorization step, all of the updates originating from a supernode
is applied to the rest of the matrix to the right of that supernode. Each processor only
updates the local portion of the matrix for which it is responsible for.

The unit of data transfer between disk and the memory is a whole supernode for reads,
and a block for writes. The writes are block-oriented because an update to a supernode might
affect only a portion of the supernode being updated. The solver keeps track of modified
blocks and only the modified blocks are written back to the disk after the update. All of the
disk operations use asynchronous I/O to mask the I/O latency.

The unit of communication between processors is a block. Due to the distribution scheme
for the blocks, interprocessor communication for I/0O is limited to a subset of processors, and
the size of the subset grows proportional to the square root of the total number of proces-
sors (see previous reports). The communication protocol uses asynchronous communication
primitives for sends and blocking primitives for for the receives (the implementation uses
message passing for interprocessor communication).

The solver has been implemented on the 16 processor IBM SP-2 at the University of
Maryland. We are currently in the process of evaluating its performance.

2 The Jovian Parallel I/0O Library

The Jovian runtime library was designed to address the I/O bottleneck of parallel applica-
tions by optimizing the performance of multiprocessor architectures that include multiple
disks or disk arrays. Jovian accomplishes this by presenting a collective I/O model to the
programmer allowing the I/O for parallel programs, executing in a loosely synchronous man-
ner, to be optimized. A key objective of Jovian is to aggregate disk access requests in a way
that makes it possible to present each secondary storage device with a minimal number of
disk access requests, thereby reducing disk latency. It uses a set of coalescing processes to
aggregate the requests and to stage the I/O. These coalescing processes correspond to the
I/O service nodes on most extant large cardinality multiprocessors. The library is able to
analyze requests for array sections and to determine which disk the data is located on. The
number of coalescing processes can be varied.

There are two complementary views for accessing an out-of-core data structure (residing
on secondary storage) from each process running a parallel program. With a global view,
access to out-of-core data requires copying a globally specified subset of an out-of-core data
structure distributed across disks from or to a globally specified subset of a data structure
distributed across the processes (an in-core data structure). In order to implement such
accesses, the library needs to know the distributions of both the out-of-core data structure
and the in-core data structure, and also requires a description of the requested data transfer.
The in-core and out-of-core data distribution information can be defined compactly in either
a single global data descriptor or multiple data descriptors.

With a distributed view, each process effectively requests only the part of the data struc-
ture that it requires. In that case, the application is responsible for translating local, in-core,
data structure addresses into the correct global addresses for accessing the entire out-of-core
data structure (perhaps through calls to a runtime library such as CHAOS or Multi-block
PARTI).With a distributed view, the user program is responsible for providing the I/O sys-
tem with only the requests for that process, so the burden of translating local addresses for a
distributed data structure into the corresponding global, out-of-core, addresses is on the user
program. The I/O system is then only responsible for optimizing the accesses to maximize
bandwidth and minimize latency to secondary storage. Currently, Jovian implements the
distributed view. '

The performance of Jovian was evaluated using three application templates, each mod-
eling a structured grid application. The experiments were performed on the 128 node IBM
SP-1 at the Argonne National Laboratory. For each application, the out-of-core data is a
two-dimensional array striped across the disks by blocks of rows (in HPF terms, with a
(block, *) distribution). The disks used were ~ 1GB SCSI with a maximum transfer rate of
about 3MB/sec.

The structured grid applications templates were parallelized using the Multi-block PARTI
runtime library. This library provides the functionality to lay out distributed arrays in a
user specified way. For two of the application templates, the in-core structured grid was
partitioned across processors in both dimensions (in HPF terms, with a (block,block) distri-
bution).

The first application template involved reading an N x N, (block, block)-distributed, in-
core structured grid from disk (stored by blocks of rows) on 8, 16 and 32 application processes,
with the number of disks ranging from 2 up to the number of application processes. The
array size was varied from 4K X 4K double precision floating point numbers (128 MB) up
to 8K x 8K (512 MB). The performance results are shown in Figures 1, 2 and 3. The
measured raw disk transfer rate averaged about 2.0 MB/sec.

The second application template is similar to the first, except that it utilizes an in-core
(block,*) distribution. Thus the in-core array distribution matches the out-of-core distribu-
tion. The performance results for this application are shown in Table 1.

The variability in the disk transfer rate can be attributed to disk fragmentation on the
Unix filesystem mounted on each disk. From the minimum and maximum rates, we can
see that variability in the total per application process transfer rate is a strong function of
the associated disk transfer rate. The overhead of the library, which causes the difference
between the disk read rate and the effective data rate seen by the application processes shows

o B akxaK
o BKXBK
o M0 sKx8K
g,
-]
=
Lo
[
o

2 4
Number of C/Ps

Figure 1: Non-conforming distribution, minimum effective I/O bandwidth (8 processors)

16 =
14 4Kx4k]
1.2 [6KxBk B
S| L
5 M sKkxsk
208 -
£
: -
L4

2 4 8 16
Number of C/Ps

Figure 2: Non-conforming distributions, minimum effective I/O bandwidth (16 processors)

12 ol B 4kxaK

1 +— [8Kx6K -
Q 0.8 1+ n

® 06 [sKkx8K -
-~ U.0 T —E =y B

-] 54y
= 041 ~il 1 B
0.2 e i
o 1= B2l B ;

2 8 16

Number of C{Ps

Figure 3: Non-conforming distributions, minimum effective I/O bandwidth (32 processors)

Global Grid | #Processors | #Disks Fastest Disk Read Slowest Disk Read
Size Disk Read | Jovian Read | Disk Read | Jovian Read
4K x 4K 8 8 2.2 1.8 1.9 1.6
16 - 16 2.2 1.8 1.6 14
32 32 2.2 1.6 1.8 1.3
6K x 6K 8 8 2.2 1.9 2.1 1.8
16 16 2.2 1.8 1.8 1.5
32 32 2.2 1.8 1.7 1.5
8K x 8K 8 8 2.2 1.9 2.2 1.9
16 16 2.2 1.9 2.1 1.8
32 32 2.2 1.8 1.8 1.5

Table 1: Performance results for (block, *) distributed grid. The numbers in cols 4-7 are in

MB/sec

Global

A/P Write Rate

Grid Size | 4 procs, 4 disks

8 procs, 8 disks

4Kx4K
6Kx6K

0.89
0.96

0.84
0.81

Table 2: A/P write for (block, block) distributed grid (MB/sec)

only small variations.

The third application template performed a collective write of a (block, block)-distributed

structured grid. Table 2 shows the performance results.

The significant difference be-

tween the read and write transfer rates is due to the fact that the library performs a read-
modify-write on the disk blocks. This could potentially save time when there are many
non-contiguous block requests remaining after coalescing (as is the case for unstructured
meshes). The test application made contiguous requests, which eliminated the need for the
read operation in the read-modify-write.

